Replication fork blockage by transcription factor-DNA complexes in Escherichia coli
نویسندگان
چکیده
All organisms require mechanisms that resuscitate replication forks when they break down, reflecting the complex intracellular environments within which DNA replication occurs. Here we show that as few as three lac repressor-operator complexes block Escherichia coli replication forks in vitro regardless of the topological state of the DNA. Blockage with tandem repressor-operator complexes was also observed in vivo, demonstrating that replisomes have a limited ability to translocate through high affinity protein-DNA complexes. However, cells could tolerate tandem repressor-bound operators within the chromosome that were sufficient to block all forks in vitro. This discrepancy between in vitro and in vivo observations was at least partly explained by the ability of RecA, RecBCD and RecG to abrogate the effects of repressor-operator complexes on cell viability. However, neither RuvABC nor RecF were needed for normal cell growth in the face of such complexes. Holliday junction resolution by RuvABC and facilitated loading of RecA by RecF were not therefore critical for tolerance of protein-DNA blocks. We conclude that there is a trade-off between efficient genome duplication and other aspects of DNA metabolism such as transcriptional control, and that recombination enzymes, either directly or indirectly, provide the means to tolerate such conflicts.
منابع مشابه
Protein-DNA complexes are the primary sources of replication fork pausing in Escherichia coli.
Replication fork pausing drives genome instability, because any loss of paused replisome activity creates a requirement for reloading of the replication machinery, a potentially mutagenic process. Despite this importance, the relative contributions to fork pausing of different replicative barriers remain unknown. We show here that Deinococcus radiodurans RecD2 helicase inactivates Escherichia c...
متن کاملOverexpression of the Replicative Helicase in Escherichia coli Inhibits Replication Initiation and Replication Fork Reloading.
Replicative helicases play central roles in chromosome duplication and their assembly onto DNA is regulated via initiators and helicase loader proteins. The Escherichia coli replicative helicase DnaB and the helicase loader DnaC form a DnaB6-DnaC6 complex that is required for loading DnaB onto single-stranded DNA. Overexpression of dnaC inhibits replication by promoting continual rebinding of D...
متن کاملThe mating type switch-activating protein Sap1 Is required for replication fork arrest at the rRNA genes of fission yeast.
Schizosaccharomyces pombe rRNA genes contain three replication fork barriers (RFB1-3) located in the nontranscribed spacer. RFB2 and RFB3 require binding of the transcription terminator factor Reb1p to two identical recognition sequences that colocalize with these barriers. RFB1, which is the strongest of the three barriers, functions in a Reb1p-independent manner, and cognate DNA-binding prote...
متن کاملThe Transcription Factor DksA Prevents Conflicts between DNA Replication and Transcription Machinery
Actively dividing cells perform robust and accurate DNA replication during fluctuating nutrient availability, yet factors that prevent disruption of replication remain largely unknown. Here we report that DksA, a nutrient-responsive transcription factor, ensures replication completion in Escherichia coli by removing transcription roadblocks. In the absence of DksA, replication is rapidly arrest...
متن کاملA new trick for an old dog: TraY binding to a homopurine-homopyrimidine run attenuates DNA replication.
The effects of the d(GA)(n).d(TC)(n) repeat on plasmid replication in Escherichia coli cells were analyzed using electrophoretic analysis of replication intermediates. This repeat appeared to stall the replication fork progression in E. coli strains carrying F' episomes. The potency of replication stalling increased with the repeat's length but did not depend on its orientation relative to the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic Acids Research
دوره 34 شماره
صفحات -
تاریخ انتشار 2006